

img-proof Documentation

[image: _images/img-proof.svg]
 [https://www.travis-ci.com/SUSE-Enceladus/img-proof][image: _images/img-proof1.svg]
 [https://pypi.org/project/img-proof/][image: _images/img-proof2.svg]
 [https://pypi.org/project/img-proof/]

[image: _images/logo.png]
img-proof (IPA) provides a command line utility to test images in the Public
Cloud (AWS, Azure, GCE, OCI, Aliyun, etc.).

About

With img-proof you can now test custom images in a cloud framework agnostic way
with one tool and one API. img-proof supports the Fedora, openSUSE,
RHEL, and SLES distributions. It also supports the three largest
cloud frameworks (AWS, Azure and GCE). However, it is intended to be
distribution agnostic and framework transparent so both are easily
extensible.

Overview

The goal of img-proof is to provide a unit test framework that can be used
to verify the actual state of custom public cloud images. To do this it
leverages two packages.

pytest

Tests are written using the pytest framework.

The pytest [https://docs.pytest.org/en/latest/] framework makes it easy to write small tests, yet scales to
support complex functional testing for applications and libraries.

Testinfra

Testinfra is a plugin for pytest which provides connection backends and
test modules such as File, Group, User, Package, Service, etc.

With Testinfra [https://testinfra.readthedocs.io/en/latest/] you can write unit tests in Python to test actual state
of your servers configured by management tools like Salt, Ansible,
Puppet, Chef and so on.

img-proof

img-proof leverages Testinfra as a unit test framework. It also provides
distribution classes and cloud framework classes.

Distribution Classes

Classes can be used to provide distribution specific testing. This
includes tests such as soft reboot (e.g. “shutdown -r now”) and update.

The current supported distributions are:

	Fedora (fedora)

	openSUSE_Leap (opensuse_leap)

	RHEL (rhel)

	SLES (sles)

In addition to soft reboot, refresh and update there is a built in test for
hard reboot (framework reboot).

These tests are “synchronization points”. The tests are built into each
distribution as the commands can be slightly different.

By default pytest does not guarantee the order of tests. However, there
are cases where this is ideal when testing images. For example you
can run an update then do a reboot to ensure an instance starts properly.

A test suite such as [‘test_soft_reboot’, ‘test_sles’, ‘test_update’,
‘test_hard_reboot’, ‘test_sles_ec2’] will be broken into five pytest
invocations:

Soft reboot, test_sles, update, hard reboot, test_sles_ec2

The order of tests is guaranteed and the results will be aggregated to
determine the status of a test run. If a test fails it will be re-run
up to the number of retries. The default is three times and this can be
configured with the –retry-count option.

Cloud Framework Classes

The cloud framework classes contain methods necessary to interact with
instances/images in a given cloud framework.

Some of the required methods for cloud framework classes include:

	Launch instances

	Terminate instances

	Get instance status

	Get instance info

	Stop/Start/Reboot instances

The implementations are dependent on each CSP API and require
the CSP credentials to perform the necessary operations.

The current supported CSPs are:

	Azure

	EC2

	GCE

	OCI

	SSH

	Aliyun

The SSH class is generic and can be used for any accessible instance
that is running. There are no credentials required except the instance
needs the proper SSH User and SSH Key configured for access.

The SSH class cannot be used to test hard reboot (framework reboot) or
to launch/start/stop/terminate instances.

Contributing

Contributions to img-proof are welcome and encouraged. See CONTRIBUTING [https://github.com/SUSE-Enceladus/img-proof/blob/master/CONTRIBUTING.md] for
info on getting started.

Issues/Enhancements

Please submit issues and requests to Github [https://github.com/SUSE-Enceladus/img-proof/issues].

License

Copyright (c) 2021 SUSE LLC.

Distributed under the terms of GPL-3.0+ license, see LICENSE [https://github.com/SUSE-Enceladus/img-proof/blob/master/LICENSE] for details.

Getting Started

Installation

SUSE package

SLES 15

Ensure you have properly registered SLES then perform the following
commands as root for SLES 15:

$ SUSEConnect -p sle-module-public-cloud/15.#/x86_64
$ zypper ar https://download.opensuse.org/repositories/Cloud:Tools:CI/SLE_15_SP#/Cloud:Tools:CI.repo
$ zypper refresh
$ zypper in python3-img-proof

Replace # with the service pack you are using. Currently support exists for SP2+.

openSUSE Leap 15

Perform the following commands as root for Leap 15:

$ zypper ar https://download.opensuse.org/repositories/Cloud:Tools:CI/openSUSE_Leap_15.#/Cloud:Tools:CI.repo
$ zypper refresh
$ zypper in python3-img-proof

Currently Leap 15.3+ is supported.

openSUSE Tumbleweed

Perform the following commands as root for Tumbleweed:

$ zypper ar https://download.opensuse.org/repositories/Cloud:Tools:CI/openSUSE_Tumbleweed/Cloud:Tools:CI.repo
$ zypper refresh
$ zypper in python3-img-proof

Note

An openSUSE and SLES test suite is shipped alongside the SUSE package as python3-img-proof-tests.

SUSE test suite

To install the SLES test suite alongside the package use the following command:

$ zypper in python3-img-proof-tests

PyPI

$ pip install img-proof

Development

Install the latest development version from GitHub:

$ pip install git+https://github.com/SUSE-Enceladus/img-proof.git

Branch

Install a specific branch from GitHub:

$ pip install git+https://github.com/SUSE-Enceladus/img-proof.git@{branch/release}

See PyPI
docs [https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support]
for more information on vcs support.

Configuration

img-proof Config

The img-proof configuration file is ini format ~/.config/img_proof/config.
This can be used for any configuration value including cloud framework
specific values.

To override the default configuration location the CLI option -C or
--config is available.

The config file can have multiple sections. The default section is [img_proof]
and each cloud framework can have its own section such as [{cloud_framework}].
A config file with an [ec2] section may look like the following:

[img_proof]
test_dirs = /custom/tests/path/
results_dir = /custom/results/dir/

[ec2]
region = us-west-1
ssh_private_key_file = ~/.ssh/id_rsa

There are multiple ways to provide configuration values when using
img-proof. All options are available via command line and the configuration
file. Also, for certain clouds img-proof will read cloud specific
config files.

All command line options which have a format such as --ssh-user can be
placed in config with underscores. E.g. --ssh-user would be ssh_user in
the config file.

The precedence for values is as follows:

command line -> cloud config -> img-proof config -> defaults

The command line arguments if provided will be used over all other values.

Azure Config

The Azure provider class has no additional config file. Options should be
placed into the img-proof config file.

EC2 Config

For testing EC2 instances img-proof will look for the ec2utils configuration
file located at ~/.ec2utils.conf.

See
ec2utils [https://github.com/SUSE-Enceladus/Enceladus/tree/master/ec2utils]
for an example configuration file.

To override the EC2 config location the CLI option,
--cloud-config is available. In order for img-proof to use the ec2imgutils
config file the --account-name is required.

GCE Config

The GCE cloud class has no additional config file. Options should be
placed into the img-proof config file.

OCI Config

For testing OCI instances img-proof will look for the Oracle configuration
file located at ~/.oci/config.

See
OCI docs [https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/configuration.html]
for more info on the Oracle configuration file.

To override the OCI config location the CLI option,
--cloud-config is available.

The OCI config file is optional as img-proof will also look for configuration
arguments in the img-proof config file and these can be overridden by CLI values.

SSH Config

The SSH cloud class has no additional config file. Options should be
placed into the img-proof config file.

Aliyun Config

The Aliyun cloud class has no additional config file. Options should be
placed into the img-proof config file.

Credentials

Azure

Azure uses service principals for authentication. A service principal
(service account) json file is required to use the Azure cloud via
file based authentication. It is critical the json file is generated with
the endpoint URLs for SDK authentication.

To create the file you will need the Azure CLI [https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest].

The following command will generate the necessary json file:

$ az ad sp create-for-rbac --sdk-auth --role Contributor --scopes /subscriptions/{subscription_id} --name "{name}" > mycredentials.json

Once a json credential file is generated for a service principal it can be
used to test images/instances in Azure. The --service-account-file
option should point to the path to this file.

See Azure docs [https://docs.microsoft.com/en-us/python/azure/python-sdk-azure-authenticate?view=azure-python#mgmt-auth-file] for more info on creating a service principal json file.

EC2

The EC2 credentials are a --secret-access-key and --access-key-id.
These can be from a root account but it’s suggested to use IAM accounts to
control role based access.

Once you have generated secret key values these can be configured with the
--secret-access-key and --access-key-id options.

See EC2 docs [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html] for more information on setting up IAM accounts.

GCE

GCE uses service accounts for file based authentication. The service account is
required to have the following roles:

	Compute Instance Admin (v1) Role
(roles/compute.instanceAdmin.v1 [https://cloud.google.com/compute/docs/access/iam])

	Service Account User Role
(roles/iam.serviceAccountUser [https://cloud.google.com/compute/docs/access/iam])

Additionally the file must be JSON format and contain a private key.

The following steps will create a service account with gcloud and gsutil:

$ gcloud --project={project-id} iam service-accounts create {service-account-id}
$ gcloud --project={project-id} iam service-accounts keys create {service_account-id}-key.json --iam-account {service-account-id}@{project-id}.iam.gserviceaccount.com
$ gcloud projects add-iam-policy-binding {project-id} --member serviceAccount:{service-account-id}@{project-id}.iam.gserviceaccount.com --role roles/compute.instanceAdmin.v1
$ gcloud projects add-iam-policy-binding {project-id} --member serviceAccount:{service-account-id}@{project-id}.iam.gserviceaccount.com --role roles/iam.serviceAccountUser

The json file generated by the second command “{service_account-id}-key.json”
is used for GCE authentication.

$ img-proof test gce ... --service-account-file {service_account-id}-key.json

Or you can follow the
Libcloud
docs [http://libcloud.readthedocs.io/en/latest/compute/drivers/gce.html#service-account]
or Google
docs [https://cloud.google.com/iam/docs/creating-managing-service-accounts].

Once a json credential file is generated for a service account it can be
used to test images/instances in GCE. The --service-account-file
option should point to the path to this file.

For more information on updating an existing service account:

	Create a new JSON private key:
creating-managing-service-account-keys [https://cloud.google.com/iam/docs/creating-managing-service-account-keys]

	Granting roles:
granting-roles-to-service-accounts [https://cloud.google.com/iam/docs/granting-roles-to-service-accounts]

SSH

Requires no cloud credentials to test instances. SSH user, SSH
private key can be placed in SSH section of config. The instance to be
tested must be running.

OCI

To use OCI a new compartment, a new user, a new group and an api signing key are required.
The user will require access to the compartment via a policy.

The first step is to create an API signing key which will be used by the user for
running commands via the OCI SDK. The following
doc [https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm]
provides info on creating a key and getting the public key and fingerprint.

Once you have the API signing key you will now create a user, group, compartment and
a policy for the new user. The following
doc [https://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/addingusers.htm#two]
provides all the steps necessary to set these artifacts up. The group will require the
following policy for the new compartment:

Allow group {group_name} to manage all-resources in compartment {compartment_name}

With this setup you can now add the API key to your user. The steps to upload your public
key are in the following doc:
doc [https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm#three]

All of this info can be added as arguments to the OCI config, img-proof config or as
command line arguments when testing images in OCI. The required options are:

	--availability-domain

	--compartment-id

	--oci-user-id

	--signing-key-fingerprint

	--signing-key-file

	--tenancy

Aliyun

The Aliyun credentials are a --access-secret and --access-key.
These can be from a root account but it’s suggested to use RAM accounts to
control role based access.

See Aliyun docs [https://www.alibabacloud.com/help/doc-detail/57445.htm?spm=a3c0i.100866.8498235500.1.4d7e1e4eQPpV5V] for more information on setting up RAM accounts.

Usage

img-proof provides two entry points, a command line interface and a controller class
that can be used directly from Python code.

CLI

The command line interface is written using the Click [https://click.palletsprojects.com/en/7.x/] package. The API
documentation can be found at API.

Verbosity

As seen in the example the CLI output verbosity can be controlled via options:

	--debug
	Display debug level logging to console. Including full stack trace
if there is an exception.

	--verbose
	(Default) Display logging info to console.

	--quiet
	Silence logging information on test run.

Instance Options

The instance-option arguments provide a way to enable instance options
that will be activated when launching instances. This is a multi-option
value. To provide multiple options in a single command split each option
into a separate argument. An example for tests in Google:

img-proof test gcp ... \
 --instance-option SEV_SNP_CAPABLE \
 --instance-option GVNIC

The Google instance options are the guest os feature flags. See
https://cloud.google.com/compute/docs/images/create-custom#guest-os-features
for more details. As seen above an example for Google looks like:

img-proof test gcp ... \
 --instance-option SEV_SNP_CAPABLE

The Amazon options are the different options available when running the
run instances command. These can be found at
https://docs.aws.amazon.com/cli/latest/reference/ec2/run-instances.html.

To provide an instance option for testing in Amazon the type of option
and the key/val are provided in the following format: “OptType=key.val”.
Example usage to enable SEV SNP looks like:

img-proof test ec2 ... \
 --instance-option CpuOptions=AmdSevSnp.enabled

Where the key is derived from the CLI reference page provided above. In
this case the AWS CLI option is –cpu-options which becomes “CpuOptions”.
“AmdSevSnp” is the key and the value is “enabled”.

Cleanup

By default the instance will be terminated if all tests pass. If a test
fails the instance will remain running for debugging purposes. This
behavior can be configured with the --cleanup and --no-cleanup
flags.

	--cleanup
	Instance will always be terminated.

	--no-cleanup
	Instance will always remain running.

ANSI Style

By default the command line output will be colored. To disable color
output use the --no-color option.

Early Exit

The early exit option will stop the test run on the first failure.
--early-exit is passed to Pytest as -x.

See Pytest docs [https://docs.pytest.org/en/latest/usage.html#stopping-after-the-first-or-n-failures] for more info.

Requirements and external test injection

Using the --inject option; packages, archives and files can be
injected on the test instance. This also provides the ability to install
packages in an existing repository and run commands on the test
instance.

The following sections may be provided in a YAML style config
file. Each section can be a single item or a list of items. All files
are copied and extracted to the default SSH location for the test
instance. This is generally the user’s home directory.

	inject_packages
	an rpm path or list of rpm paths which will be copied and installed on
the test instance.

	inject_archives
	an archive or list of archives which will be copied and extracted on the
test instance.

	inject_files
	a file path or list of file paths which will be copied to the test
instance.

	execute
	a command or list of commands to run on the test instance.

	install
	a package name or list of package names to install from an existing repo
on the test instance.

The order of processing for the sections is as follows:

	inject_packages

	inject_archives

	inject_files

	execute

	install

Example

testing_injection.yaml.

inject_packages: /home/user/test.noarch.rpm
inject_archives: /home/user/test.tar.xz
inject_files: /home/user/test.py
install:
 - python3
 - python3-Django
execute: python test.py

> img-proof test ... --inject testing_injection.yaml

Code

img-proof can also be imported and invoked directly in Python 3 code through
the controller class. It is installed as a Python site package and can be
imported as follows:

from img_proof.ipa_controller import test_image

status, results = test_image(
 cloud_framework,
 access_key_id,
 ...
 storage_container,
 tests
)

See img_proof.ipa_controller module for specific methods that can be
invoked.

Examples

The following are a few use case examples for img-proof. The test suite
in use is provided by the Open Build Service python3-img-proof-test.
For more information on installing the test suite see the Tests
documentation.

Launch & Test a new instance in Azure

The first step to testing an image is determining the image ID. The image
ID will look different for all cloud frameworks. See the examples below for
the three supported clouds:

	Azure: SUSE:SLES:12-SP3:latest

	EC2: ami-0f7c9a39e20a9adea

	GCE: sles-12-sp3-v20180814

To launch and test a new instance of a given image the –image-id or
-i option is required.

The next step is to determine what tests you want to run against the instance.
To see what test modules are available there is an img-proof list command. You
can invoke the command with -v option to see a verbose list of all tests
within each module.

$ img-proof list
test_sles_guestregister
test_sles_haveged
test_sles_hostname
test_sles_install_migration
test_sles_lscpu
test_sles_motd
test_sles_repos
test_sles

By default img-proof looks in two directories for test modules:

	~/img_proof/tests/

	/usr/share/lib/img_proof/tests/

This can be overridden with the –test-dirs option. The option is expected
to be a comma separated list of absolute test directory paths.

Once you have a set of tests installed and chosen you can run img-proof against an
image. For this example we will test the Azure image and only run the base
SLES tests:

$ img-proof test azure -i suse:sles-15-sp2-byos:gen2:Latest \
 --distro sles test_sles

Starting instance
Testing soft reboot
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_motd.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_license.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_root_pass.py
Testing hard reboot
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_hostname.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_haveged.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_lscpu.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_kernel_version.py
Running test /share/lib/img_proof/tests/SLES/test_sles_multipath_off.py
PASSED tests=10|pass=10|fail=0|error=0

You can see that test_sles is a “test description”. It’s a YAML file that contains
an ordered list of test modules to run. To find out more info on tests and test
structure see the Tests documentation.

By default img-proof will launch the instance with a small instance size. For Azure
this is Standard_B1ms. Also, if the tests pass the instance will be
terminated and resource group will be cleaned up in Azure. This behavior can
be modified with the –cleanup and –no-cleanup options.

There are many options available when running an img-proof test which can be listed
via the help command:

$ img-proof test --help

Test an existing instance in Azure

If you want to run tests on an existing instance you can provide the
–running-instance-id or -r option. All options and tests that are
available for a new instance can be run against an existing one. When
testing a running instance the instance will not be terminated if the
tests pass. To terminate an already running instance the –cleanup
option is required.

The running instance ID is different based on cloud provider. It
can either be an ID or a name. For Azure the instance “ID” is an instance
name.

$ img-proof test azure --running-instance-id img-proof-zephl \
 --distro sles test_sles

Testing soft reboot
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_motd.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_license.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_root_pass.py
Testing hard reboot
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_hostname.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_haveged.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_lscpu.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_kernel_version.py
Running test /share/lib/img_proof/tests/SLES/test_sles_multipath_off.py
PASSED tests=10|pass=10|fail=0|error=0

After running a test you can view the results using the results command:

$ img-proof results show
PASSED tests=10|pass=10|skip=0|fail=0|error=0

More information can be displayed by providing the verbose option -v:

$ img-proof results show -v
FAILED tests=10|pass=10|skip=0|fail=0|error=0

platform: azure
distro: sles
image: 10.0.0.1
timestamp: 20201118151743
log_file: /home/{user}/img_proof/results/azure/suse:sles-15-sp2-byos:gen2:Latest/img-proof-zephl/20201118151743.log
results_file: /home/{user}/img_proof/results/azure/suse:sles-15-sp2-byos:gen2:Latest/img-proof-zephl/20201118151743.results
region: southcentralus
instance: img-proof-zephl

test_soft_reboot PASSED
test_sles_motd::test_sles_motd[paramiko://10.0.0.1] PASSED
test_sles_license::test_sles_license[paramiko://10.0.0.1] PASSED
test_sles_root_pass::test_sles_root_pass[paramiko://10.0.0.1] PASSED
test_hard_reboot PASSED
test_sles_hostname::test_sles_hostname[paramiko://10.0.0.1] PASSED
test_sles_haveged::test_sles_haveged[paramiko://10.0.0.1] PASSED
test_sles_lscpu::test_sles_lscpu[paramiko://10.0.0.1] PASSED
test_sles_kernel_version::test_sles_kernel_version[paramiko://10.0.0.1] PASSED
test_sles_multipath_off::test_sles_multipath_off[paramiko://10.0.0.1] PASSED

Testing with SSH only

If you have a running instance that has an accessible IP address you can run
img-proof tests without the use of a cloud provider framework. This means the
instance must have an SSH key pair setup. Without cloud framework credentials
the instance cannot be terminated after tests and must be running. There is
also no way to do a framework reboot test.

Instead of providing the image –image-id or instance
–running-instance-id you are required to provide an IP address
–ip-address.

$ img-proof test ssh --ip-address 10.0.0.1 \
 --distro sles test_sles

Testing soft reboot
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_motd.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_license.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_root_pass.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_hostname.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_haveged.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_lscpu.py
Running test /usr/share/lib/img_proof/tests/SLES/test_sles_kernel_version.py
Running test /share/lib/img_proof/tests/SLES/test_sles_multipath_off.py
PASSED tests=10|pass=10|fail=0|error=0

Tests

Tests are developed using the
Testinfra [https://testinfra.readthedocs.io] package. The package
extends Pytest and provides a framework for writing Python tests to
verify the actual state of systems.

SLES Test Suite

There is a suite of tests for SLES and openSUSE_Leap. It can be found
in the GitHub repository [https://github.com/SUSE-Enceladus/img-proof/tree/master/usr/share/lib/img_proof/tests].

They are also packaged in the Open Build Service for openSUSE:

$ zypper ar http://download.opensuse.org/repositories/Cloud:/Tools/<distribution>
$ zypper refresh
$ zypper in python3-img-proof-tests

Test directories

The default locations for test files are locally in ~/img_proof/tests/ and
centralized in /usr/share/img_proof/tests. These locations can be overridden
in the config and/or command line arguments as –test-dirs.

Test organization

Tests can be organized in a directory structure:

~/img_proof/tests/:
 conftest.py
 test_image.py
 openSUSE:
 test_leap.py
 EC2:
 test_leap_ec2.py
 GCE:
 ...
 SLES:
 test_sles.py
 test_sles_sap.py
 EC2:
 test_sles_ec2.py
 ...

Additionally, test descriptions in YAML format can be used to organize
tests:

test_leap_423.yaml.

tests:
 - test_image
 - test_leap

Adding tests to command line args you simply drop the extension:

$ img-proof test ... test_leap_423

This means there cannot be a name overlap with test files and/or test
descriptions.

Test descriptions can also include other descriptions:

test_leap_423.yaml.

tests:
 - test_image
 - test_leap
include:
 - test_another_description

Test invocation

To invoke a specific test the Pytest conventions can be used:

$ img-proof test ... test_leap_ec2::test-services-running-enabled

To run only one parameterized test append ids and use [ID]:

@pytest.mark.parametrize("name", [
 ("cloud-init"),
 ("amazon-ssm-agent"),
], ids=['ci', 'ssm'])
def test_leap_ec2():
 ...

$ img-proof test ... test_leap_ec2::test-services-running-enabled[ssm]

Failures

By default all tests will run even with failure. Using the
--early-exit option will halt test invocation at first failure.

Incremental test
classes [http://pytest.org/dev/example/simple.html#incremental-testing-test-steps]
can be used to cause all subsequent tests to fail if the prev fails. To
prevent expected failures.

Custom Test Modules

Modules [http://testinfra.readthedocs.io/en/latest/modules.html] are
provided for checking standard things such as packages, services, files,
etc.

Modules can be easily written or extended using Pytest
fixtures [https://docs.pytest.org/en/latest/fixture.html]. Any custom
modules reside in the conftest.py file inside the test directory:

import pytest

@pytest.fixture()
def Echo(Command):
 def f(arg):
 return Command.check-output("echo %s", arg)
 return f

@pytest.fixture()
def CheckRepo(File):
 def f(repo, name):
 repo = File('/etc/zypp/repos.d/' + repo + '.repo')
 tests = [repo.exists,
 repo.contains('enabled=1'),
 repo.contains('name=%s' % name)]
 return all(tests)
 return f

To use a Pytest fixture in a test it is simply included as an arg by name.
For example the test below includes the CheckRepo fixture which is then
used to validate a specific repo exists and is enabled.

def test_some_repo(CheckRepo):
 assert CheckRepo('openSUSE-20200325-0', 'openSUSE-20200325-0')

In order for Pytest to discover the fixture used in a test module it is
required to be in a conftest.py file in the same directory or a parent
directory.

Useful Links

For more info on writing tests see the
Testinfra [http://testinfra.readthedocs.io/en/latest/] and
Pytest [https://docs.pytest.org/en/latest/contents.html]
documentation.

API

img_proof package

Subpackages

	img_proof.scripts package
	Submodules
	img_proof.scripts.cli module

	img_proof.scripts.cli_utils module

	Module contents

Submodules

	img_proof.collect_items module

	img_proof.ipa_azure module

	img_proof.ipa_cloud module

	img_proof.ipa_constants module

	img_proof.ipa_controller module

	img_proof.ipa_distro module

	img_proof.ipa_ec2 module

	img_proof.ipa_exceptions module

	img_proof.ipa_gce module

	img_proof.ipa_opensuse_leap module

	img_proof.ipa_sles module

	img_proof.ipa_ssh module

	img_proof.ipa_utils module

	img_proof.results_plugin module

Module contents

img_proof.scripts package

Submodules

	img_proof.scripts.cli module

	img_proof.scripts.cli_utils module

Module contents

img_proof.scripts.cli module

img_proof.scripts.cli_utils module

img_proof.collect_items module

img_proof.ipa_azure module

img_proof.ipa_cloud module

img_proof.ipa_constants module

img_proof.ipa_controller module

img_proof.ipa_distro module

img_proof.ipa_ec2 module

img_proof.ipa_exceptions module

img_proof.ipa_gce module

img_proof.ipa_opensuse_leap module

img_proof.ipa_sles module

img_proof.ipa_ssh module

img_proof.ipa_utils module

img_proof.results_plugin module

Index

img_proof

	img_proof package
	Subpackages
	img_proof.scripts package
	Submodules

	Module contents

	Submodules
	img_proof.collect_items module

	img_proof.ipa_azure module

	img_proof.ipa_cloud module

	img_proof.ipa_constants module

	img_proof.ipa_controller module

	img_proof.ipa_distro module

	img_proof.ipa_ec2 module

	img_proof.ipa_exceptions module

	img_proof.ipa_gce module

	img_proof.ipa_opensuse_leap module

	img_proof.ipa_sles module

	img_proof.ipa_ssh module

	img_proof.ipa_utils module

	img_proof.results_plugin module

	Module contents

 _static/file.png

_images/logo.png

_static/plus.png

_static/logo.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 img-proof Documentation

